Pulsatile to-fro flow induces greater and sustained expression of tissue factor RNA in HUVEC than unidirectional laminar flow.

نویسندگان

  • Ryuzo Abe
  • Norio Yamashita
  • Adrienne Rochier
  • Rei Abe
  • Alexander Nixon
  • Joseph A Madri
  • Bauer E Sumpio
چکیده

Tissue factor (TF) is expressed in atherosclerotic lesions. Since mechanical forces influence endothelial cell (EC) function and are thought to account for the unique distribution of atherosclerosis in areas exposed to disturbed flow, we hypothesized that disturbed to-fro flow (TFF) and unidirectional pulsatile forward flow (PFF) would have different effects on TF expression in EC. TF RNA expression in HUVEC exposed to mechanical stress in the presence or absence of chemical stimulation with thrombin was determined. TFF induced a significantly higher TF expression than PFF that was sustained for 8 h. Combination of mechanical and chemical stimuli induced significantly higher TF expression than only mechanical stresses, and this effect was synergistic in both TFF and PFF. The MAPK p38 inhibitor SB-203580 significantly inhibited TF expression induced by mechanical and chemical stimulations, but the MEK inhibitor PD-98059 did not inhibit TF induced by TFF. Immunoblotting revealed that ERK1/2 phosphorylation induced by TFF was sustained for 120 min, whereas that induced by PFF was not. We conclude that disturbed flow induced greater and sustained amplification of TF expression, and this synergistic effect may be regulated by p38 MAPK and ERK1/2. These results provide added insight into the mechanism of atherosclerosis in areas of disturbed flow.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of six non-Newtonian viscosity models on hemodynamic parameters of pulsatile blood flow in stenosed artery

A numerical study of hemodynamic parameters of pulsatile blood flow is presented in a stenotic artery with A numerical study of hemodynamic parameters of pulsatile blood flow is presented in a stenotic artery with non-Newtonian models using ADINA. Blood flow was considered laminar, and the arterial wall was considered rigid. Studied stenosis severities were 30, 50, and 70% of the cross-section...

متن کامل

Newtonian and Non-Newtonian Blood Flow Simulation after Arterial Stenosis- Steady State and Pulsatile Approaches

Arterial stenosis, for example Atherosclerosis, is one of the most serious forms of arterial disease in the formation of which hemodynamic factors play a significant role. In the present study, a 3-D rigid carotid artery with axisymmetric stenosis with 75% reduction in cross-sectional area is considered. Laminar blood flow is assumed to have both Newtonian and non-Newtonian behavior (generalize...

متن کامل

Fluid shear stress modulates surface expression of adhesion molecules by endothelial cells.

We investigated the effect of hemodynamic shear forces on the expression of adhesive molecules, E-selectin, and intercellular adhesion molecule-1 (ICAM-1) on human umbilical vein endothelial cells (HUVEC) exposed to laminar (8 dynes/cm2) or turbulent shear stress (8.6 dynes/cm2 average), or to a static condition. Laminar flow induced a significant time-dependent increase in the surface expressi...

متن کامل

Atheroprotective Pulsatile Flow Induces Ubiquitin-Proteasome–Mediated Degradation of Programmed Cell Death 4 in Endothelial Cells

OBJECTIVES We recently found low level of tumor suppressor programmed cell death 4 (PDCD4) associated with reduced atherosclerotic plaque area (unpublished). We investigated whether atheroprotective unidirectional pulsatile shear stress affects the expression of PDCD4 in endothelial cells. METHODS AND RESULTS En face co-immunostaining of the mouse aortic arch revealed a low level of PDCD4 in ...

متن کامل

Gene expression profiling of human aortic endothelial cells exposed to disturbed flow and steady laminar flow.

Subtraction cloning and cDNA arrays were used to compare steady-state mRNA levels in cultured human aortic endothelial cells (HAEC) exposed for up to 24 h to either high-shear (13 dyn/cm(2)) steady laminar flow (LF), an established representation of "atheroprotective" flow conditions, or low-shear (<1 dyn/cm(2)), pulsatile, nonsteady, non-unidirectional flow (disturbed flow, DF) that simulates ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 300 4  شماره 

صفحات  -

تاریخ انتشار 2011